Geothermal Power Plant

From Oxygen Not Included Wiki
Jump to navigation Jump to search

The Geothermal Power Plant is a directive found exclusively on Ceres. The power plant is a collection of interactive POIs buried deep inside Ceres similar to the Story Trait system. Unlike story traits, they are guaranteed to spawn, cannot be changed through map generation settings, and cannot be demolished. Once activated, the power plant can be used to generate copious amounts of power, or create rare resources that would otherwise require rocketry. Completing the story trait maximizes the power plant's throughput.

Description

The Geothermal Power Plant generates 4 points of interest: a Geothermal Heat Pump and three Geo Vents.

Progress

When initially discovered, all points of interests are inactive.

Activation

1200 kg of Steel.pngSteel Molten Steel.png is needed to repair the Geothermal Heat Pump. Once repaired, three liquid inputs become accessible for intake. A duplicant is also required to manually reconnect a Geo Vent to a Geothermal Heat Pump. This is considered a Toggling errand and does not require special skills. After activation, the Geothermal Heat Pump is ready to use although will not operate at maximum throughput unless all three Geo Vent are connected.

Completion

One of the Geo Vents is blocked by a Bammoth patty that has fossilized into lead. To clear the blocked Geo Vent, operate the heat pump (requires inputting 12000 kg of any liquid) and ensure that the input content temperature as monitored by the heat pump is at least 178.85°C. Note the in-game tooltip confusingly states clearing the blockage requires "piping in liquids hot enough to melt lead" - this is misleading as it appears to refer to the input content temperature, but is actually the output temperature that must be hot enough to melt lead. Completing this task unlocks the Full Steam Ahead achievement and grants the Shiny Coprolite Keepsake as a reward.

Mechanics

After inputting 12000 kg of liquid, the pump distributes 11040 kg (92%) of the liquid to all connected Geo Vents. The remaining 960 kg (8%) is deleted. The amount distributed to each vent is roughly the same, but not identical.

Materials emits from the vents at 15 kg/s, but +150°C hotter from the monitored input content temperature up to a maximum of 1376.85°C. If the input content temperature was over 1376.85°C, then it has the opposite effect and emit materials 150°C cooler down to a minimum of 1376.85°C. The input content temperature is monitored as a weighted average across all inputs rather than on a per-element basis. That is, inputting a packet at 350°C of Crude Oil.pngCrude Oil Petroleum.png Solid Crude Oil.png with a final input content temperature of 100° C will still output 250° C for crude oil rather than 500° C. Moreover, specific heat capacity is accounted for in the input content temperature, so, for example, inputting equal amounts of 1900°C Molten Glass.pngMolten Glass Rock Gas.png Resource Glass.png (SHC of 0.2) and 20°C Water.pngWater Steam.png Ice.png (SHC of 4.179) will result in a final input content temperature of 105°C, not 960°C, because of the higher heat capacity of the cool water.

In addition, impurities are emitted from the Geo Vent at the same temperature of the emitted material. What comes out very much depends on the input content temperature.


Impurities Table
Material Min. Input
Temperature
Threshold (°C)
Total Mass (kg) Input Temperature
Phase Transitions (°C)
Emitted Element Element Mass
Igneous Rock.pngIgneous Rock Magma.png -273.15 °C / -459.67 °F 50

-273.15 ↔ 1559.85°C

Igneous Rock.pngIgneous Rock Magma.png 50

1559.85 ↔ 2506.85°C

Magma.pngMagma Rock Gas.png Igneous Rock.png 50

2506.85 ↔ 9726.85°C

Rock Gas.pngRock Gas Magma.png 50
Granite.pngGranite Magma.png -273.15 °C / -459.67 °F 50

-273.15 ↔ 518.85°C

Granite.pngGranite Magma.png 50

518.85 ↔ 1559.85°C

Igneous Rock.pngIgneous Rock Magma.png 50

1559.85 ↔ 2506.85°C

Magma.pngMagma Rock Gas.png Igneous Rock.png 50

2506.85 ↔ 9726.85°C

Rock Gas.pngRock Gas Magma.png 50
Obsidian.pngObsidian Magma.png -273.15 °C / -459.67 °F 50

-273.15 ↔ 2876.85°C

Obsidian.pngObsidian Magma.png 50

2876.85 ↔ 9726.85°C

Rock Gas.pngRock Gas Magma.png 50
Salt Water.pngSalt Water Steam.png Salt.png Brine.png Ice.png -273.15 °C / -459.67 °F 320

-273.15 ↔ -172.5°C

Brine Ice.pngBrine Ice Brine.png 73.6
Ice.pngIce Water.png 246.4

-172.5 ↔ -157.5°C

Brine.pngBrine Steam.png Salt.png Brine Ice.png 73.6
Ice.pngIce Water.png 246.4

-157.5 ↔ -50.31°C

Salt Water.pngSalt Water Steam.png Salt.png Brine.png Ice.png 320

-50.31 ↔ 649.85°C

Salt.pngSalt Molten Salt.png 22.4
Steam.pngSteam Water.png 297.6

649.85 ↔ 1614.85°C

Molten Salt.pngMolten Salt Salt Gas.png Salt.png 22.4
Steam.pngSteam Water.png 297.6

1614.85 ↔ 9726.85°C

Salt Gas.pngSalt Gas Molten Salt.png 22.4
Steam.pngSteam Water.png 297.6
Polluted Water.pngPolluted Water Steam.png Resource Dirt.png Polluted Ice.png -273.15 °C / -459.67 °F 400

-273.15 ↔ -170.65°C

Polluted Ice.pngPolluted Ice Polluted Water.png 400

-170.65 ↔ -30.65°C

Polluted Water.pngPolluted Water Steam.png Resource Dirt.png Polluted Ice.png 400

-30.65 ↔ 176.85°C

Resource Dirt.pngDirt Sand.png 4
Steam.pngSteam Water.png 396

176.85 ↔ 1862.85°C

Sand.pngSand Molten Glass.png 4
Steam.pngSteam Water.png 396

1862.85 ↔ 2506.85°C

Molten Glass.pngMolten Glass Rock Gas.png Resource Glass.png 4
Steam.pngSteam Water.png 396

2506.85 ↔ 9726.85°C

Rock Gas.pngRock Gas Magma.png 4
Steam.pngSteam Water.png 396
Rust.pngRust Molten Iron.png 56.85 °C / 134.33 °F 125

56.85 ↔ 1684.85°C

Rust.pngRust Molten Iron.png 125

1684.85 ↔ 2899.85°C

Molten Iron.pngLiquid Iron Iron Gas.png Iron.png 125

2899.85 ↔ 9726.85°C

Iron Gas.pngGas Iron Molten Iron.png 125
Molten Lead.pngMolten Lead Lead Gas.png Lead.png 266.85 °C / 512.33 °F 65

266.85 ↔ 1899°C

Molten Lead.pngMolten Lead Lead Gas.png Lead.png 65

1899 ↔ 9726.85°C

Lead Gas.pngGas Lead Molten Lead.png 65
Sulfur Gas.pngGas Sulfur Liquid Sulfur.png 426.85 °C / 800.33 °F 30

426.85 ↔ 9726.85°C

Sulfur Gas.pngGas Sulfur Liquid Sulfur.png 30
Sour Gas.pngSour Gas Liquid Methane.png Sulfur.png 526.85 °C / 980.33 °F 200

526.85 ↔ 9726.85°C

Sour Gas.pngSour Gas Liquid Methane.png Sulfur.png 200
Iron Ore.pngIron Ore Molten Iron.png 576.85 °C / 1070.33 °F 50

576.85 ↔ 1684.85°C

Iron Ore.pngIron Ore Molten Iron.png 50

1684.85 ↔ 2899.85°C

Molten Iron.pngLiquid Iron Iron Gas.png Iron.png 50

2899.85 ↔ 9726.85°C

Iron Gas.pngGas Iron Molten Iron.png 50
Molten Aluminum.pngMolten Aluminum Aluminum Gas.png Aluminum.png 926.85 °C / 1700.33 °F 100

926.85 ↔ 2620°C

Molten Aluminum.pngMolten Aluminum Aluminum Gas.png Aluminum.png 100

2620 ↔ 9726.85°C

Aluminum Gas.pngGas Aluminum Molten Aluminum.png 100
Molten Copper.pngLiquid Copper Copper Gas.png Copper.png 1026.85 °C / 1880.33 °F 100

1026.85 ↔ 2710.85°C

Molten Copper.pngLiquid Copper Copper Gas.png Copper.png 100

2710.85 ↔ 9726.85°C

Copper Gas.pngGas Copper Molten Copper.png 100
Molten Gold.pngLiquid Gold Gold Gas.png Gold.png 1126.85 °C / 2060.33 °F 100

1126.85 ↔ 3005.85°C

Molten Gold.pngLiquid Gold Gold Gas.png Gold.png 100

3005.85 ↔ 9726.85°C

Gold Gas.pngGas Gold Molten Gold.png 100
Magma.pngMagma Rock Gas.png Igneous Rock.png 1526.85 °C / 2780.33 °F 75

1526.85 ↔ 2506.85°C

Magma.pngMagma Rock Gas.png Igneous Rock.png 75

2506.85 ↔ 9726.85°C

Rock Gas.pngRock Gas Magma.png 75
Hydrogen Gas.pngHydrogen 1526.85 °C / 2780.33 °F 50

1526.85 ↔ 9726.85°C

Hydrogen Gas.pngHydrogen 50
Molten Iron.pngLiquid Iron Iron Gas.png Iron.png 1626.85 °C / 2960.33 °F 250

1626.85 ↔ 2899.85°C

Molten Iron.pngLiquid Iron Iron Gas.png Iron.png 250

2899.85 ↔ 9726.85°C

Iron Gas.pngGas Iron Molten Iron.png 250
Wolframite.pngWolframite Molten Tungsten.png 1726.85 °C / 3140.33 °F 275

1726.85 ↔ 3076.85°C

Wolframite.pngWolframite Molten Tungsten.png 275

3076.85 ↔ 3571.85°C

Tungsten.pngTungsten Molten Tungsten.png 275

3571.85 ↔ 6079.85°C

Molten Tungsten.pngLiquid Tungsten Tungsten Gas.png Tungsten.png 275

6079.85 ↔ 9726.85°C

Tungsten Gas.pngGas Tungsten Molten Tungsten.png 275
Fullerene.pngFullerene Liquid Carbon.png 2226.85 °C / 4040.33 °F 3

2226.85 ↔ 4076.85°C

Fullerene.pngFullerene Liquid Carbon.png 3

4076.85 ↔ 4976.85°C

Liquid Carbon.pngLiquid Carbon Carbon Gas.png Refined Carbon.png 3

4976.85 ↔ 9726.85°C

Carbon Gas.pngGas Carbon Liquid Carbon.png 3
Niobium.pngNiobium Molten Niobium.png 2226.85 °C / 4040.33 °F 5

2226.85 ↔ 2626.85°C

Niobium.pngNiobium Molten Niobium.png 5

2626.85 ↔ 4893.85°C

Molten Niobium.pngLiquid Niobium Niobium Gas.png Niobium.png 5

4893.85 ↔ 9726.85°C

Niobium Gas.pngGas Niobium Molten Niobium.png 5

All materials within the specified temperature range will be emitted and does not change by connecting more Geo Vents. The output material emits as if it has already phase changed; that is, 320kg of 200°C Salt Water.pngSalt Water Steam.png Salt.png Brine.png Ice.png will actually emit as 22.4kg of 200°C Salt.pngSalt Molten Salt.png and 297.6kg of Steam.pngSteam Water.png (See element emission column in the table above for a comprehensive list). Solids are emitted as mini-comets that do no damage while gases and liquids output around the vent as beads (not as droplets).

Heat pump uptime

Although the amount of impurities is fixed, connecting additional Geo Vents to the heat pump may still be a good idea. A heat pump intakes up to 30kg/s of liquid but a single vent can only emit 15kg/s, so about 50% of the heat pump's maximum throughput is lost waiting if only one Geo Vent is connected. Two vents almost matches the intake of the heat pump, but as the material isn't identically distributed about 5% throughput is still lost waiting for the Geo Vent(s) to clear. All three vents is more than enough to match the intake of the heat pump, although the small throughput bonus may not merit the complexity of handling an additional vent.

Power generation

The heat pump can be used for power as it increases the input content by 150°C. Inputting 12000kg of 95°C Water.pngWater Steam.png Ice.png (the return temperature of Steam Turbine's water) will output: 11040 + 297.6 (Salt Water → Steam) + 396 (Polluted Water → Steam) kg of 245°C steam, or 11733.6 kg of Steam.pngSteam Water.png (requiring 266.4kg of Steam to be added in order to sustain pump usage). In addition, the vent will emit 22.4kg of Salt.pngSalt Molten Salt.png, 4kg of Resource Dirt.pngDirt Sand.png, 50kg of Igneous Rock.pngIgneous Rock Magma.png, 50kg of Granite.pngGranite Magma.png, 50kg of Obsidian.pngObsidian Magma.png, and 125kg of Rust.pngRust Molten Iron.png. Each operation produces (245 - 95) × ( Steam.png11733.6 × 4.179 Water.png + Salt.png22.4 × 0.7 Molten Salt.png + Resource Dirt.png4 × 1.48 Sand.png + Igneous Rock.png50 × 1 Magma.png + Granite.png50 × 0.79 Magma.png + Obsidian.png50 × 0.2 Magma.png + Rust.png125 × 0.449 Molten Iron.png ), or 7,381,790.91 kDTU of usable heat for steam turbines. If each operation takes 416 seconds (400 seconds of 30kg/s intake and a 16 second pump animation), this produces at most 17745 kDTU/s, or 17189W if optimally harvested through a Steam Turbine.

It may be tempting to use esoteric materials like Super Coolant.pngSuper Coolant Super Coolant Gas.png Solid Super Coolant.png or Liquid Nuclear Waste.pngNuclear Waste Nuclear Fallout.png Uranium Ore.png, which benefits from high specific capacity and a high evaporation point. Although this produces more power than using water, it is challenging to upkeep with the lost material on each operation, and it poses additional problems when trying to reclaim the materials from the Geo Vents.

Creating rare materials

The list of impurities features several novel elements that would otherwise be impossible to attain without rocketry, such as

In addition, it allows access to the space materials Fullerene.pngFullerene Liquid Carbon.png and Niobium.pngNiobium Molten Niobium.png albeit in very small quantities. If 2226.85°C liquid is fed into the heat pump, output material will be at 2076.85°C. The following materials are emitted, sorted by phase and molecular mass:

This is in total 2298kg of impurities, or 954kg of liquid impurities. If all liquid impurities are recycled, 6kg of additional liquid is needed sustain pump usage.

Heating 12000kg of a low specific heat capacity material such as Molten Gold.pngLiquid Gold Gold Gas.png Gold.png (SHC 0.1291) by 150°C to sustain pump usage would require 232,380 kDTU of heat, which is just under the heat created by refining 2.5 batches of Steel.pngSteel Molten Steel.png in a Metal Refinery. However, assuming each operation of the heat pump takes 416 seconds, this would require approximately 2.3 kg/s of outside material to sustain pump usage, which would require roughly 10 gold volcanos to sustain and so would be very expensive. Molten Glass.pngMolten Glass Rock Gas.png Resource Glass.png with its low specific heat capacity of 0.2 may also be a good contender as it can be made in a self-sustaining loop via Polluted Dirt.pngPolluted Dirt Molten Glass.png.

Alternatively, Magma.pngMagma Rock Gas.png Igneous Rock.png could be used as the input material. Geotuning a Geyser 4 times would gives 1.925 - 2.245 kg/s (50% chance of a random volcano falling within this range) of magma at 2326.85°C, close to the approximately 2.3 kg/s of outside material needed to sustain pump usage. Mixing this with the 2076.85°C output magma in a 8:92 ratio (to recoup heat pump loss) gives 2096.85°C magma. Heating 12000kg of magma by the remaining 130°C would require 1,560,000 kDTU of heat, which would require approximately 16.67 batches of Steel.pngSteel Molten Steel.png in a Metal Refinery. This is likely unsustainable as it would require approximately 2.8 kg/s of iron. Instead, if volcano output is used directly, over 416 seconds, the equivalent of about 8780 W of steam power is lost (3860 W to magma cooling, 4920 W to magma loss assuming loss of 125°C Steam Turbine output).

Finally, if liquid impurities are recycled, 12000kg of a 4:100:100:100:175:500 ratio Molten Glass.pngMolten Glass Rock Gas.png Resource Glass.png, Molten Aluminum.pngMolten Aluminum Aluminum Gas.png Aluminum.png, Molten Copper.pngLiquid Copper Copper Gas.png Copper.png, Molten Gold.pngLiquid Gold Gold Gas.png Gold.png, Magma.pngMagma Rock Gas.png Igneous Rock.png, Molten Iron.pngLiquid Iron Iron Gas.png Iron.png mixture would have an average specific heat capacity of (4 × 0.2 + 0.91 × 100 + 100 × 0.386 + 100 × 0.1291 + 175 × 1 + 500 × 0.449) ÷ 954 = 0.569. Heating this by 150°C requires 1,024,170 kDTU of heat.